Index

- Symbols \& Numerics

ϕ spherical coordinate, 318
\int symbol, 17
θ spherical coordinate, 318
Σ symbol, 24, 51-52
! symbol, 38
3-D coordinate, 314-319
3-D problems
meat-slicer method
overview, 220
pyramids, 222-224
rotating solids, 225-226
solids between two surfaces, 230-234
solids of revolution, 227-228
solids with congruent cross sections, 220-221
solids with similar cross sections, 221-222
weird solids, 224-225
overview, 219-220
shell method
overview, 234
peeling and measuring can of soup, 235-236
use of, 236-238
surface of revolution, 229-230
tips for solving, 238-239

- A •

absolute convergence, 280-281
adding vector, 313-314
advanced math
differential equations, 34
Fourier analysis, 34
multivariable calculus, 33
numerical analysis, 34-35
real analysis, 35
algebraic function, DI-agonal Method, 145-148
algebraic times cosine function, 139
algebraic times exponential function, 139
algebraic times sine function, 139
algorithm, 35
alternating series
absolute convergence, 280-281
based on convergent positive series, 277
conditional convergence, 280-281
defined, 257
divergence, 348
making new series from old, 276
overview, 261, 275
sequence of partial sums, 248
testing, 277-279, 281-282
two forms of basic, 276
alternative 3-D coordinate system, 316-319
alternative indeterminate forms of limits, 68-72
altitude, 318
analytic geometry, 12-14
angle, measuring, 3
angular distance, 50
anti-derivative, 28, 73
anti-differentiation
defined, 4
indefinite integrals, 96-97
in integration, 94, 346
approximate integration
overview, 74
with rectangles, 74-77
Simpson's Rule, 80-83
slack factor, 78
Trapezoid Rule, 79-80
approximating
area problem, 25-27
definite integrals, 23
functions in Taylor series, 300-301
in numerical analysis, 35
arc notation, 58
$\arccos \mathrm{x}$ function, 138, 143
$\operatorname{arccot} \mathrm{x}$ function, 138, 143
Archimedes, 13
arc-length formula, 5, 215-217, 229
$\arcsin \mathrm{x}$ function, 138, 143
$\arctan \mathrm{x}$ function, 138, 143
area function, 92-94
area problems. See also approximate
integration; definite integral; indefinite integral
advanced math
differential equations, 34
Fourier analysis, 34
multivariable calculus, 33
numerical analysis, 34-35
real analysis, 35
building formula
height, 25
limiting margin of error, 23-24
other ways of approximating, 25-27
overview, 22-23
sigma notation, 24-25
width, 24
calculating arc length, 215-217
classical versus analytic geometry, 12-14
generalizing, 15-16
improper integral
horizontally infinite, 199-201
overview, 199
vertically infinite, 201-204
infinite series
convergent versus divergent, 32-33
distinguishing sequences from, 31
evaluating, 32
Mean Value Theorem for Integrals, 213-215
overview, 11-12, 197
rule for, 198-199
slicing space into rectangles, 19-22
solving with integration
finding area between curves, 29
measuring curve lengths, 29-30
overview, 28-29, 343
solid of revolution, 30-31
solving with more than one function finding area between two functions, 206-209
finding area under functions, 205-206
measuring unsigned areas, 211-213
overview, 204-205
signed areas, 209-211
solving without Riemann sum formula, 97-99
asymptote, 47, 202
autonomous equation, 333
axe
in Cartesian coordinate system, 314
in cylindrical coordinate systems, 316
x
area problems, 15
Cartesian coordinates, 314
definite integrals, 12
signed areas, 209

B

Barrow, Isaac, 91
basic anti-derivative, 106-107
basic integral
basic anti-derivatives, 106-107
integration rules, 107-110
overview, 106
benchmark series, 264, 267
boldfaced text, 3
braces in notations, 244
breathing exercise, 349

-C•

Calculus I
derivatives
limit formula for, 56
notation for, 56-57
overview, 55-56
differentiation
Chain Rule, 62-64
Constant Multiple Rule, 59
memorizing key derivatives, 57-59
overview, 57
Power Rule, 60
Product Rule, 61
Quotient Rule, 61-62
Sum Rule, 59
limits, 53-55
overview, 37, 53
Calculus II
definite integrals, 345
indefinite integrals, 346
infinite series
convergence or divergence, 348
related sequences, 347
integration
as fancy addition, 344
finding area, 343
as inverse differentiation, 346-347
signed areas, 344
slack factor, 345
slices, 344-345
overview, 1-8, 343
Calculus III. See also vector
dimension
3-D Cartesian coordinates, 314-315
alternative 3-D coordinate systems, 316-319
functions of several variables, 319-321
multiple integrals
evaluating, 324-326
measuring volume under surface, 323-324
overview, 323
overview, 33, 307
partial derivatives
evaluating, 322-323
measuring slope in three dimensions, 321-322
overview, 321
Cartesian coordinate
3-D, 314-315
analytic geometry, 13
versus polar coordinates, 50-51
vector basics, 308
case, trig substitution
distinguishing, 162-163
secant, 169-171
sine, 164-166
tangent, 166-169
Chain Rule
differentiating functions, 62-64, 106
finding derivative of functions, 115
finding integrals
of nested functions, 120
of products, 121
checking test answer, 351-352
circle
area problems, 12
as cross sections, 227, 239
circumference of circle formula, 229
classical geometry, 12-14
coefficient, 310
comma, 252
comparison test
direct, 265-267
limit, 267-270
overview, 264-265
composition of function
Chain Rule, 62-63
finding integrals of, 118-120
integrating function multiplied by set of, 121-122
variable substitution
integrating with, 123-125
overview, 117
shortcut for, 125-128
computing integrals, 114
conceptual understanding, 352
conditional convergence, 280-281
congruent cross section, volume of solids with, 220-221
conic section, 11
Constant Multiple Rule
differentiation, 59
finding integrals of nested functions, 119
finding values using roots, 182
integration
overview, 108
polynomials, 110
power series, 287
moving denominator, 154
to separate integrals, 153
for series, 250-251
constant of integration $C, 97,99$
constant, 310
continuity, 115
continuous function, 19, 47-48
convergence
absolute, 280-281
conditional, 280-281
intervals of in power series, 288-290
sequences, 245-246
series, 32-33, 52, 277
Taylor series, 298-300
tests of
integral, 270-272
nth-term, 263
one-way, 263-264
overview, 261
ratio, 273-274
convergence, tests of (continued)
root, 274-275
starting, 262
two-way, 264
coordinate
alternative 3-D, 316-319
Cartesian
3-D, 314-315
analytic geometry, 13
vector basics, 308
cylindrical, 316-317
polar, 50-51, 314
spherical, 317-319
cos x function, 293
cosecant, 159-161
cosine
double-angle identities for, 50
integrating powers of, 152-155
cosine function, 46,148
cosine times exponential function, 139
cotangent, 159-161
counting numbers, summation formula for, 83-84
cross section
circular, 227, 239
horizontal, 238
meat-slicer method
area between curves, 231-233
congruent, 220-221
rotating solids, 225-226
similar, 221-222
solids of revolution, 228
volume of pyramids, 223
weird solids, 224-225
vertical, 238
cubic number, summation formula for, 84-85
curve
finding area between, 29
measuring lengths, 29-30
measuring unsigned area between, 211-213
solid of revolution, 30
cylinder, 220
cylindrical coordinate, 316-317

D

DE (differential equation)
building versus solving, 331-332
checking solutions, 332-333
defined, 6
integrals, 330-331
linear, 329-330
order of, 329
ordinary and partial, 328-329
overview, 34, 327-328
solving
initial-value problems, 334-336
separable equations, 333-334
using integrating factor, 336-339
defining sequence, $252-253,347$
definite integral
approximate integration
overview, 74
with rectangles, 74-77
Simpson's Rule, 80-83
slack factor, 78
Trapezoid Rule, 79-80
approximating, 23
area problem, 12, 16-19
in Calculus II, 345
defined, 4
Fundamental Theorem of Calculus
additional part of, 95
area function, 92-94
connecting slope and area, 94
overview, 89-91
slope, 92
indefinite integral
anti-differentiation, 96-97
versus definite, 101-102
overview, 95-96
signed areas, 99-101
solving without Riemann sum formula, 97-99
Mean Value Theorem for Integrals, 214
overview, 73
Riemann sum formula
defined, 4
evaluating limit, 89
expressing function as sum, 86-87
limits of integration, 86
overview, 23-27, 85-86
solving problem, 88
signed areas, 344
summation formulas, 83-85
unsigned areas, 210
variable substitution to evaluate, 132-133
degree, 42, 187
denominators in partial fraction, 181
derivative. See also differentiation
defined, 33
limit formula for, 56
memorizing, 57-59, 106
notation for, 56-57
overview, 55-56
partial
evaluating, 322-323
measuring slope in three dimensions, 321-322
in multivariable calculus, 33
overview, 321
of trig functions, 58
determinate form of limit, 65-66
DI-agonal Method
algebraic functions, 145-148
inverse trig functions, 143-145
logarithmic functions, 141-143
overview, 140-141
trig functions, 148-150
Difference Rule, 59, 108
differentiability of polynomial, 285
differential equation (DE)
building versus solving, 331-332
checking solutions, 332-333
defined, 6
integrals, 330-331
linear, 329-330
order of, 329
ordinary and partial, 328-329
overview, 34, 327-328
solving
initial-value problems, 334-336
separable equations, 333-334
using integrating factor, 336-339
differentiation
Chain Rule, 62-64
Constant Multiple Rule, 59
formulas for inverse trig functions, 163
memorizing key derivatives, 57-59
overview, 57
Power Rule, 60
Product Rule, 61
Quotient Rule, 61-62
Sum Rule, 59
dimension in multivariable calculus
3-D Cartesian coordinates, 314-315
alternative 3-D coordinate systems, 316-319
discontinuous function, 115
discontinuous integrand, 203-204
distinct linear factor, 177-178
distinct quadratic factor, 178
divergence
sequences, 245-246
series, 32-33, 52
Taylor series, 298-300
tests of
integral, 270-272
nth-term, 263
one-way, 263-264
overview, 261
ratio, 273-274
root, 274-275
starting, 262
two-way, 264
division, polynomial, 188-191
does not exist (DNE), limit
common functions, 65
defined, 54
improper integral, 201
sequence, 246
double integral 323-325
double-angle identies, 50
dx constant, 350

- E

elementary functions
advantages of polynomials, 285
drawbacks of, 284-285
overview, 284
representing
integrals as, 114-115
as polynomials, 285
as series, 285-286
ellipse, 13-14
equation. See also differential equation (DE) autonomous, 333
heat, 34
Laplace, 34
separable, 333-334
systems of, 182-183
error bound for Taylor series, 301-303
even power integration
cosines, 154-155
secants
with tangents, 155
without tangents, 157
sines, 154-155
tangents
with odd powers of secants, 158-159
without secants, 156-157
exam-taking tips, 349-352
exercise, breathing, 349
expanded notation, 247, 249-250
exponent
integrating
cotangents and cosecants, 159-160
sines and cosines, 152-155
tangents and secants, 155-159
negative, 40, 109, 160
Power Rule, 60
in Pre-Calculus, 39-41
exponential curve, 14, 224
exponential function, 44-45
expressing functions, 300-301
expression
of form $f(x) \cdot g(x), 129-130$
of form $\mathrm{f}(\mathrm{x}) \cdot \mathrm{h}(\mathrm{g}(\mathrm{x})), 130-132$
$-F$
factorial, 38-39, 273
first-degree polynomial, 268
formula. See also Riemann sum formula arc-length, 5, 215-217, 229
building for area problems approximating definite integral, 23
height, 25
limiting margin of error, 23-24
other ways of approximating, 25-27
overview, 22-23
sigma notation, 24-25
width, 24
circumference of circle, 229
for finding surface of revolution, 229-230
half-angle, 228
for inverse trig functions, 163
limit, for derivatives, 56
summation, 83-85
Fourier analysis, 34
fourth-order ODE, 329
fractional coefficient, 190
fractional exponent, 60
fraction, 38-39. See also partial fraction
FTC (Fundamental Theorem of Calculus)
additional part of, 95
anti-derivatives, 106-107
area function, 92-94
connecting slope and area, 94
indefinite integrals, 73
overview, 28, 89-91
slope, 92
functions. See also individual functions by type; nested function
area, in Fundamental Theorem of Calculus, 92-94
DI-agonal Method algebraic, 145-148
inverse trig, 143-145
logarithmic, 141-143
differentiating, 63-64
elementary
advantage of polynomials, 285
drawbacks of, 284-285
overview, 284
representing as polynomials, 285
representing as series, 285-286
expressing as series
$\cos \mathrm{x}, 293$
overview, 291
$\sin \mathrm{x}, 291-292$
graphing common
exponential, 44-45
linear and polynomial, 43-44
logarithmic, 45
trigonometric, 46-47
horizontal transformations, 48
indefinite integrals, 28
integrating, multiplied by set of nested, 121-122
limits, 53-54, 65
Maclaurin series, 293-296
multiplied by functions, 123
overview, 283-284
power series
integrating, 287-288
interval of convergence, 288-290
overview, 286-287
related area functions, 94
representing integrals as, 114-115
Riemann sum formula, 86-87
of several variables, 319-321
solving area problems with more than one
finding area between two, 206-209
finding area under, 205-206
measuring unsigned area, 211-213
overview, 204-205
signed areas, 209-211
substitution when one part differentiates to another, 129-132
Taylor series
calculating error bounds for, 301-303
computing with, 297-298
constructing, 303-304
convergent and divergent, 298-300
expressing versus approximating, 300-301
overview, 296-297
transforming continuous, 47-48
trigonometric
derivatives of, 58-59
DI-agonal Method, 148-150
integrating combinations of, 160-161
vertical transformations, 48
Fundamental Theorem of Calculus (FTC)
additional part of, 95
anti-derivatives, 106-107
area function, 92-94
connecting slope and area, 94
indefinite integrals, 73
overview, 28, 89-91
slope, 92

- G

Gauss, Karl Friedrich, 84
general expression, 87
general form of power series, 295
general solution, 334
generalizing area problem, 15-16
geometric series, 258, 286
geometry, 12-14
graphing common function
exponential and logarithmic, 44-45
linear and polynomial, 43-44
logarithmic, 45
trigonometric, 46-47

-H•

half-angle identities, 50, 154, 228
harmonic series
defined, 32
divergence of, 258-259
making new from old, 276
sequence of partial sums, 254
heat equation, 34
height
area problem, 25
of rectangles, 22
horizontal axes in polar coordinate system, 316
horizontal cross section, 238
horizontal transformations of function, 48
horizontally infinite improper integral, 199-201
hyperbola, 14

identities
integration of trig functions using, 112-113
trig
even powers of sines and cosines, 156
half-angle, 154
important, 48-50
using to integrate trig functions, 112-113
using to tweak functions, 160-161

360 Calculus II For Dummies

improper integral defined, 5 horizontally infinite, 199-201
overview, 199
vertically infinite, 201-204
improper polynomial fraction, 191
improper rational function
integrating
distinguishing from proper, 187
overview, 187
polynomial division, 188-191
overview, 173
incorrect test answer, 352
indefinite integral. See also integration by parts; partial fraction; variable substitution
anti-differentiation, 96-97
area problem, 27-28
in Calculus II, 346
versus definite integrals, 101-102
limits of integration, 17
overview, 4-5, 95-96
signed areas, 99-101
solving without Riemann sum formula, 97-99
indeterminate forms of limit
alternative, 68-72
L'Hospital's Rule, 66-68
overview, 55, 65-66
infinite improper integral
horizontally, 199-201
vertically, 201-204
infinite sequence
convergent, 245-246
converting into infinite series, 31
divergent, 245-246
notation for, 244-245
overview, 244
infinite series. See also functions; test
alternating
absolute convergence, 280-281
based on convergent positive series, 277
conditional convergence, 280-281
defined, 257
divergence, 348
making new series from old, 276
overview, 275
sequence of partial sums, 248
testing, 277-279, 281-282
two forms of basic, 276
basics, 247-249
in Calculus II
convergence or divergence, 348
related sequences, 347
connecting with related sequences, 252-254
convergent versus divergent, 32-33
defined, 2
distinguishing from sequences, 31
evaluating, 32
expressing functions as
versus approximating, 300
$\cos \mathrm{x}, 293$
overview, 291
$\sin \mathrm{x}, 291-292$
geometric, 255-257
harmonic, 258
infinite sequences
convergent, 245-246
divergent, 245-246
notation for, 244-245
overview, 244
overview, 5-6, 243
power series
differentiating from other series, 295
integrating, 287-288
interval of convergence, 288-290
overview, 286-287
p-series, 257-259
representing elementary functions as, 285-286
sigma notation
Constant Multiple Rule, 250-251
overview, 249
Sum Rule, 251-252
ways to use, 250
writing in expanded form, 249-250
Sum Rule, 286
initial-value problem, 334-336
inner function, 63, 125-128
input values to indefinite integral, 346
integrability, 113-116
integral. See also definite integral;
indefinite integral; partial fraction
computing, 114
Constant Multiple Rule, 119, 153
differential equations, 330-331
evaluating basic
anti-derivatives, 106-107
integration rules, 107-110
overview, 106
improper
horizontally infinite, 199-201
overview, 199
vertically infinite, 201-204
Mean Value Theorem for Integrals, 197, 213-215
multiple
evaluating, 324-326
measuring volume under surface, 323-324
in multivariable calculus, 33
overview, 323
Power Rule, 153
representing as functions, 114-115
Sum Rule, 136, 153
variable substitution
to evaluate definite, 132-133
of nested functions, 118-120
of product, 120-121
well defined, 115
integral test, 270-272
integrands, discontinuous, 203-204
integrating factor, 336-339
integration. See also 3-D problems; area problems; definite integral; partial fraction; trig substitution; variable substitution
approximate
overview, 74
with rectangles, 74-77
Simpson's Rule, 80-83
slack factor, 78
Trapezoid Rule, 79-80
asymptotic limits of, 202
in Calculus II
as fancy addition, 344
finding area, 343
as inverse differentiation, 346-347
signed areas, 344
slack factor, 345
slices, 344-345
defined, 2
evaluating basic integrals
17 basic anti-derivatives, 106-107
integration rules, 107-110
overview, 106
integrability, 113-116
overview, 4-5, 11, 105
polynomials, 110-111
power series, 287-288
rational expressions, 111
solving problems with
finding area between curves, 29
measuring curve lengths, 29-30
overview, 28-29
solid of revolution, 30-31
of trig functions using identities, 112-113
integration by parts
DI-agonal Method
algebraic functions, 145-148
inverse trig functions, 143-145
logarithmic functions, 141-143
overview, 140-141
trig functions, 148-150
overview, 135
reversing Product Rule, 136-137
use of, 137-139
intervals of convergence, 288-290
inverse identities, 49
inverse trig function
derivatives of, 58-59
DI-agonal Method, 143-145
integration by parts, 139
inverses of function, 225
italicized text, 3

$\cdot L$

Laplace equation, 34
latitude, 318
left rectangle, 25, 74-75
left-hand limits of integration, 74
Leibniz, Gottfried, 57, 91
Leibniz notation, 56-57
length
calculating arc, 215-217
measuring curve, 29-30
L'Hospital's Rule
alternative indeterminate forms, 68-72
determinate form of limits, 65-66
indeterminate form of limits, 65-66
limit comparison tests, 269
overview, 64-65
use of, 66-68
limit
alternative indeterminate, 68-72
asymptotic, of integration, 202
in Calculus I, 53-55
determinate form of, 65-66
does not exist
common functions, 65
defined, 54
improper integral, 201
sequence, 246
formulas for derivatives, 56
indeterminate form of, 65-66
of integration, 12,15
Riemann sum formula, 86, 89
linear differential equation, 329-330
linear factor
distinct, 177-178
integrating partial fractions, 184
repeated, 178-179
linear function, 43-44
\log composed with algebraic function, 139
log function, 139
log rolling, 71
log times algebraic function, 139
logarithmic curve, 14
logarithmic function
DI-agonal Method, 141-143
integration by parts, 138
overview, 45
longitude, 318

- M

Maclaurin, Colin, 295
Maclaurin series, 291, 293-297
magnitude, vector, 310-311
margin of error, 23-24

Mean Value Theorem for Integrals, 197, 213-215
meat-slicer method
overview, 220
pyramids, 222-224
solids
with congruent cross sections, 220-221
of revolution, 227-228
rotating, 225-226
with similar cross sections, 221-222
between two different surfaces, 230-234
weird, 224-225
memorizing derivatives, 57-59, 106
method of exhaustion, 13
midpoint rectangle, 26
Midpoint Rule, 74, 76-77
minus sign, 56
monofont text, 3
multiple integral
evaluating, 324-326
measuring volume under surface, 323-324
in multivariable calculus, 33
overview, 323
multiplication, scalar, 311-312
multivariable calculus. See also vector
dimension
3-D Cartesian coordinates, 314-315
alternative 3-D coordinate systems, 316-319
functions of several variables, 319-321
multiple integrals
evaluating, 324-326
measuring volume under surface, 323-324
overview, 323
overview, 33, 307
partial derivatives
evaluating, 322-323
measuring slope in three dimensions, 321-322
overview, 321

- N•
natural log function
DI-agonal Method, 141-143
integration by parts, 138
overview, 45
negative area, 99, 344
negative power
cotangents and cosecants, 160
overview, 40
Power Rule, 60, 109
nested function
Chain Rule, 62-63
finding integrals of, 118-120
integrating function multiplied by set of, 121-122
variable substitution
integrating with, 123-125
overview, 117
shortcut for, 125-128
Newton, Isaac, 57, 91
nonnegative integer exponent, 40
notation. See also sigma notation
arc, 58
braces in, 244
defined, 4
for derivatives, 56-57
expanded, 247, 249-250
for infinite sequences, 244-245
Leibniz, 56-57
trig, 41-42
with and without braces, 244
nth-term test, 256, 263, 279
numerators in partial fraction, 181
numerical analysis, 34-35

- 0

octant, 314
odd power integration
secants
with even powers of tangents, 158-159
without tangents, 157-158
sines and cosines, 152-153
tangents, 156
ODE (ordinary differential equation), 328-329
one-way test, 261, 263-264
ordinary differential equation (ODE), 328-329
outer function, 63, 125-128

p

pairing trig function, 160-161
parabola, 14
partial derivative
evaluating, 322-323
measuring slope in three dimensions, 321-322
in multivariable calculus, 33
overview, 321
partial differential equation (PDE), 34, 328-329
partial fraction
example, 191-193
integrating improper rationals overview, 187
polynomial division, 188-191
versus proper rational expressions, 187
overview, 173-174
with rational expressions, 175-176
solving integrals by using
distinct linear factors, 177-178
distinct quadratic factors, 178
finding unknowns, 181-183
integrating, 184-186
overview, 176
repeated linear factors, 178-179
repeated quadratic factors, 179-180
setting up, 180-181
partial sum, sequences of, 253-254
past material. See Calculus I; L'Hospital's Rule; Pre-Calculus
PDE (partial differential equation), 34, 328-329
phi, 317
plotting cylindrical coordinate, 316
plus sign, 252
polar coordinate, 50-51, 314
polynomial
advantage of, 285
benchmark series, 268
converting from functions, 153
division, 188-191
elementary functions, 285
graphing common functions, 43-44
integration, 110-111

364
 Calculus II For Dummies

polynomial (continued)
overview, 39
representing elementary functions as, 285
Taylor, 301-303
positive integer exponent, 40
positive series, 275, 277
power
integrating
cotangents and cosecants, 159-160
sines and cosines, 152-155
tangents and secants, 155-159
negative, 40, 109, 160
Power Rule, 60
in Pre-Calculus, 39-41
Power Rule
differentiation, 60
evaluating integrals, 153
integrating
overview, 109
polynomials, 110-111
power series, 287-288
power series
differentiating from other series, 295
integrating, 287-288
interval of convergence, 288-290
overview, 286-287
practice problem, 2
Pre-Calculus
asymptotes, 47
exponents, 39-41
factorials, 38-39
graphing common functions exponential, 44-45
linear and polynomial, 43-44
logarithmic, 45
trigonometric, 46-47
important trig identities, 48-50
overview, 37-38
polar coordinates, 50-51
polynomials, 39
radians, 42-43
sigma notation, 51-52
transforming continuous functions, 47-48
trig notation, 41-42
precision, 35
prism, 220
product, integral of, 120-121
Product Rule
differentiation, 61, 106, 114
integration by parts, 135
linear first-order DEs, 338
reversing, 136-137, 339
proper rational expression, 173, 187
pyramid, volume of, 222-224

quadratic factor
distinct, 178
of form ($\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$), 185-186
of form ($\mathrm{ax}^{2}+\mathrm{c}$), 184-185
repeated, 179-180
quadrature method, 13
Quotient Rule, 61-62, 106

- R

r spherical coordinate, 318
radian, 3, 42-43
ratio test, 273-274
rational expression
integration, 111
limit comparison tests, 268
partial fractions with, 174-176
rational power, 109
reading through exam, 350
real analysis, 7,35
rectangle
approximate integration with, 74-77
approximating area with
left, 25
midpoint, 26
right, 26
in classical geometry, 12
finding height of, 22
slicing space into to calculate area, 19-22
rectangular coordinate, 3-D, 314-315
remainder
polynomial division with, 189-191
polynomial division without, 188-189
remainder term, Taylor, 283-284, 301-303
repeated linear factor, 178-179
repeated quadratic factor, 179-180
reviews of past material. See Calculus I;
L'Hospital's Rule; Pre-Calculus
revolution
solids of
meat-slicer method, 227-228
overview, 30-31
surfaces of, 229-230
Riemann, Bernhard, 91
Riemann sum, 12, 78
Riemann sum formula calculating definite integral calculating sum, 88 evaluating limit, 89 expressing function as sum, 86-87
limits of integration, 86
overview, 85-86
solving problem, 88
defined, 4
overview, 23-27
right rectangle, 26, 75-76
right-hand limit of integration, 75
root, 181-182
root test, 274-275
rotating problems, meat-slicer method, 225-226
rule. See also Constant Multiple Rule; Power Rule; Sum Rule
for area problems, 198-199
Chain Rule
differentiating functions, 106
differentiation, 62-64
finding derivative of functions, 115
finding integral of nested functions, 120
finding integral of products, 121
Difference Rule, 59, 108
integration, 107-110
L'Hospital's Rule
alternative indeterminate forms, 68-72
determinate form of limits, 65-66
indeterminate form of limits, 65-66
limit comparison tests, 269
overview, 64-65
use of, 66-68

Midpoint Rule, 74, 76-77
Product Rule
differentiation, 61, 106, 114
integration by parts, 135
linear first-order DEs, 338
reversing, 136-137, 339
Quotient Rule, 61-62, 106
Simpson's Rule, 74, 80-83
Trapezoid Rule, 74, 79-80
Rumsey, Deborah, 37
Ryan, Mark, 37, 53

-S•

scalar, 308, 310
scalar multiplication, 311-312
scribbling during exam, 351
secant, integrating powers of, 155-159
secant case, trig substitution, 163-164, 169-171
second-degree polynomial, 268
second-order ODE, 329
separable equation, 333-334
sequence
connecting series with related, 252-254
infinite
convergent and divergent, 245-246
notations for, 244-245
overview, 244
overview, 31
of partial sums, $32,248,347$
series. See infinite series
shell method
overview, 234
peeling and measuring can of soup, 235-236
use of, 236-238
shortcut
for intergrating nested functions, 128
for variable substitution of nested functions, 125-128
sigma notation
area problem, 24-25
overview, 51-52, 247

366
 Calculus II For Dummies

sigma notation (continued)
series
Constant Multiple Rule, 250-251
overview, 249-252
Sum Rule, 251-252
use of, 250
writing in expanded form, 249-250
signed area, 99-101, 209-211
similar cross sections, volume of solid with, 221-222
Simpson's Rule, 74, 80-83
sine
double-angle identities for, 50
expressing as series, 291-292
half-angle formulas for, 228
integrating powers of, 152-155
pairing with cosines, 161
sine case, trig substitution, 163-166
sine curve, 14
sine function, 46,148
sine times exponential function, 139
slack factor, approximate integration, 78
slope
Fundamental Theorem of Calculus, 92, 94
measuring in three dimensions, 321-322
solid
meat-slicer method to find volume of with congruent cross sections, 220-221 with similar cross sections, 221-222 between two different surfaces, 230-234
weird, 224-225
overview, 219
solids of revolution
meat-slicer method, 227-228
overview, 30-31
specific form of power series, 295
spherical coordinate, 317-319
square identities, 49
square number, summation formula for, 84
straight-line distance, 215
study tip, 2
substitution. See trig substitution; variable substitution
subtracting vector, 313-314
sum formula. See Riemann sum formula

Sum Rule
differentiation, 59
even powers of tangents with secants, 159
finding values using roots, 182
infinite series, 251-252, 286
integrating
overview, 108
polynomials, 110
power series, 287
to separate integrals, 153
solving rational expressions, 175-176
split integrals, 136
splitting functions, 154
summation formula, 83-85
surface, measuring under volume, 323-324
surface of revolution, 229-230
system of equation, 182-183

- T•

tangent
double-angle identities for, 50
integrating powers of, 155-159
pairing with secants, 161
tangent case, trig substitution, 163-164, 166-169
Taylor polynomial, 301
Taylor series
calculating error bounds for, 301-303
computing with, 297-298
constructing, 303-304
convergent, 298-300
divergent, 298-300
expressing versus approximating
functions, 300-301
versus other series, 295
overview, 296-297
remainder term, 283-284, 301-303
term, 244
test
alternating series, 277-279, 281-282
comparison
direct, 265-267
limit, 267-270
overview, 264-265
of convergence and divergence
integral, 270-272
nth-term, 263
one-way, 263-264
overview, 261
ratio, 273-274
root, 274-275
starting, 262
two-way, 264
failing, 264
passing, 264
of p-series, 258-259
tips for taking math, 349-352
theta, 317
third-order ODE, 329
three-dimensional coordinate, 314-319
three-dimensional problem
meat-slicer method
overview, 220
pyramids, 222-224
rotating solids, 225-226
solids between two surfaces, 230-234
solids of revolution, 227-228
solids with congruent cross sections, 220-221
solids with similar cross sections, 221-222
weird solids, 224-225
overview, 219-220
shell method
overview, 234
peeling and measuring can of soup, 235-236
use of, 236-238
surface of revolution, 229-230
tips for solving, 238-239
tip
for studying, 2
for test-taking, 349-352
top-and-bottom trick, 212-213
tractability, 35
transforming continuous functions, 47-48
Trapezoid Rule, 74, 79-80
triangle
area problems, 12
as trapezoids, 80
trig substitution
calculating arc length, 217
distinguishing cases for, 162-163
integration
combinations of trig functions, 160-161
overview, 163-164
powers of cotangents and cosecants, 159-160
powers of sines and cosines, 152-155
powers of tangents and secants, 155-159
secant case, 169-171
sine case, 164-166
tangent case, 166-169
trig functions, 151-152
overview, 151
when to avoid, 171
trigonometry
functions
derivatives of, 58-59
DI-agonal Method, 148-150
graphing common, 46-47
integrating, 151-152, 160-161
identities
even powers of sines and cosines, 156
half-angle, 154
important, 48-50
using to integrate functions, 112-113
notation, 41-42
triple integral, 325-326
two-way test
defined, 261
integrals, 270-272
overview, 264
ratio, 273-274
root, 274-275

- \quad -

unary operator, 56
understanding, conceptual, 352
unit vector, 312-313
unknowns, 176, 181-183
unsigned area, 209, 211-213, 344

- V •
variable
functions of several, 319-321
Fundamental Theorem of Calculus, 95
variable substitution
anti-differentiation, 4
integrating rational function, 193
linear factor cases, 184-185
overview, 117
versus trig substitution, 161-162
use of
to evaluate definite integrals, 132-133
finding integral of nested functions, 118-120
finding integral of product, 120-121
integrating function multiplied by set of nested functions, 121-122
overview, 118
when to use
integrating nested functions, 123-125
overview, 123
shortcut for nested functions, 125-128
when one part of function differentiates to another, 129-132
vector
basics, 308-309
calculating with
adding and subtracting, 313-314
finding unit vector, 312-313
magnitude, 310-311
overview, 310
scalar multiplication, 311-312
overview, 308
versus scalars, 310
vertical asymptote, 201
vertical cross section, 238
vertical transformations of function, 48
vertical z-axes in cylindrical coordinate system, 316
vertical-line test, 319-320
vertically infinite improper integral, 199, 201-204
volume
measuring under surface, 323-324
meat-slicer method to find
overview, 220
pyramids, 222-224
rotating solids, 225-226
solids between different surfaces, 230-234
solids of revolution, 227-228
solids with congruent cross sections, 220-221
solids with similar cross sections, 221-222
weird solids, 224-225
shell method
overview, 234
peeling and measuring can of soup, 235-236
use of, 236-238
- W
well defined integral, 115
width, 24

- X

x-axe
area problems, 15
Cartesian coordinates, 314
definite integrals, 12
signed areas, 209

$\cdot y$

y-axe in Cartesian coordinate system, 314

z-axe in Cartesian coordinate system, 314

